
Computing
Studies

&

Software Design
 and Development

Data Representation
&

Computer Architecture

Version 1

Buckhaven High School

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 20131

Contents
Page 1 How to use this booklet.
Page 2 Introduction
Page 3 Binary
Page 4 Units of Binary
Page 5 Changing from One Unit to Another
Page 7 Using Binary to Store Integers
Page 11 Using Binary to Store Real Numbers
Page 12 Using Binary to Store Text
Page 13 Using Binary to Store Bit-Mapped Graphics
Page 16 Using Binary to Store Vector Graphics
Page 20 Machine Code
Page 21 Computer Architecture
Page 22 Memory Addresses
Page 23 Processor Components
Page 24 The Role of Buses in Processing
Page 25 Variables - How Computer Programs Store Data

How to use this booklet
This booklet has been written to cover the following content in National 4 and National 5 Computing.

The booklet is colour coded as shown above.

For assessment purposes, pupils working at National 4 level should revise only the N4 content.
Pupils attempting National 5 assessments, coursework or final exam should study only N5 content.
(N5 pupils may wish to revise N4 content anyway to improve their overall knowledge of the subject.)

National 4 National 5
Low-level Operations and
Computer Architecture

Use of binary to represent and store:

� Positive Integers
� Characters
� Instructions (machine code)

Units of storage
● Bits
● Byte
● Kilobyte (Kb)
● Megabyte (Mb)
● Gigabyte (Gb)
● Terabyte (Tb)
● Petabyte (Pb)

Use of binary to represent and
store:

� Integers
� Real Numbers
� Characters
� Instructions (machine code)
� Graphics

Basic computer architecture:
● Processor (registers, ALU,

control unit)
● Memory
● Buses (data, address)
● Interfaces

Data Types and Structures String
Numeric (integer) variables
Graphical objects

String, character
Numeric (integer and real)
variables
Boolean variables
1 Dimension (1D) arrays

SDD

Data Representation & Computer Architecture

2

Introduction

The word “compute” means to calculate or work out. A computer is simply a device that computes.
Calculations on computers involve processing data, for example doing some arithmetic with numbers,
sorting a list into order, moving the position of a character in a game.

Here is a dictionary definition of a computer:

Definition - An electronic device for storing and processing data,
according to instructions given to it in a program.

A computer is a machine that carries out instructions given to it by a human.
The instructions allow it to perform some useful functions as and when it is
required. Without instructions (written by a programmer) a computer is a
useless box of electronics that does nothing.

The key advantages computers have over humans are:
● computers work faster and more accurately than humans (the video

“Fujitsu Motherboard Production” shows how fast and accurately a
computer controlled system can work)

● they can store huge amounts of information that they never “forget”.

It might seem that computers can do almost anything. However, here are some other important things to
remember:

● computers do have brains (processors) but can’t think for themselves
● they do not have human style intelligence so can’t consider problems
● computers don’t have feelings or “common sense”. This means that there are lots of everyday

tasks that humans can perform that computers still cannot.

Task 1 - What can we do that computers can’t?
Identify three everyday activities that a human can
perform but computers cannot (or are not very
good at).
Write you answers on post-it notes and display
them at the front of the class.
Your teacher will then discuss and remove the
activities that a computer is capable performing.
Try to ensure your post-its are left on the board at
the end.

vs

vs

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 20133

Binary

You have used software packages on a computer which handle text (word processing), numbers
(spreadsheets) and graphics (photo editing and drawing). You may even have used packages which
manipulate and store sound and video data.
In computing, data is the term given to the numbers, text, graphics, sound & video that computers
process. In order to process it, data must be in a form that computers can understand.

Computers work by switching circuits (transistors) on
and off very quickly. All the data in a computer is
stored and processed using these switches.
As a switch can only be on or off, computers are
known as two-state machines. The numbers 1 and 0
are used to represent the on and off positions of the
switches.
Everything that the computer has to do and all the
data that it works with and stores is represented using
a two digit number system - 1’s and 0’s. These are
called Binary digITS (or BITS for short).

The following pages will explain how binary is used to store numbers, text and graphics.

01011010 01000111 11011011

Transistor
Diagram

SDD

Data Representation & Computer Architecture

4

Units of Binary
The software we use on the computer and the data we work with
is represented as bits within the main memory. Early computers,
like the 1975, Altair 8800 shown on the right, typically worked
with groups of 8 bits (known as a byte) at a time.
When referring to memory and storage capacities, bytes became
the basic unit of measurement. Computers today can process
and store billions of bytes every second.
By 2015 it is estimated that 8 Zettabytes
(8,000,000,000,000,000,000,000 bytes) of data will be stored on
computer systems worldwide.

Measurement of Storage Capacity
The storage capacity of RAM, hard drives or any other storage device is usually quoted in Megabytes
(MB) or Gigabytes (GB). But what do these terms mean?

Unit Description

Bit Short for Binary digIT. It is the smallest unit which can be defined in a computer. Bits (1s
or 0s) correspond to simple switches being on or off.

Byte A byte is a group of 8 bits. Early computer worked with groups of 8 bits or a byte.
Today’s computers typically process groups of 64 bits (8 bytes) at a time.

Kilobyte
(Kb)

210 Exactly 1024 bytes.
Kilo usually means 1000 of something but in binary 1024 is a round number.
Text files and small graphic files are usually quoted in KB.

Megabyte
(Mb)

220 Exactly 1024 Kilobytes.
Mega usually means 1 million of something and in this case it is approximately 1
million bytes. Photos and music files are usually measured in MB.

Gigabyte
(Gb)

230 Exactly 1024 Megabytes.
The capacity of some storage devices (DVDs, USB Flash Drives) are measured in
GB.

Terabyte
(Tb)

240 Exactly 1024 Gigabytes.
This measurement is now commonly used with newer hard disk drives,
mainframe memory and server hard drives.

Computer Memory -
Gigabytes

Mainframe Memory - Terabytes

File Server Storage (banks of hard disk drives)
 - Petabytes (1024 Tb)

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 20135

Changing From One Unit to Another

As well as knowing the order of the units (bits, bytes, Kb, Mb, Gb, Tb) it is important, when doing
calculations in computing, to be able to change from one unit to another.

For example: A high definition movie might require 1,717,986,918 bytes of storage space.
 If you were telling your friend that you had downloaded the above movie last night.

You would be far more likely to say that the movie you downloaded was 1.6 Gb in
size.

Using appropriate units is
important.
Without the correct units,
information does not make
sense.

To covert a small unit to a larger one we divide (for example changing bytes to Mb).
To convert a large unit to a smaller one we multiply (for example Tb to Mb)

What you multiply and divide by, depends on the number of places you are moving up or down. Use the
chart below.

 8 1024 1024 1024 1024
Bits bytes Kb Mb Gb Tb

Kb to Gb would be two places to the right so you would divide by 1024 twice.

Example 1: Convert 4 Mb into bytes We are moving two steps to the left
 4 x 1024 x 1024 = 4,194,304 bytes

Example 2: Convert 4096 Gb in Tb We are moving one step to the right
 4096 / 1024 = 4 Tb

Example 3: Convert 3.5 Mb into bits We are moving three steps to the left
 3.5 x 1024 x 1024 x 8 = 29,360,128 bits

Example 4: Convert 68,719,476,736 bits into Gb We are moving four steps to the right
 68,719,476,736 / 8 / 1024 / 1024 / 1024 = 8 Gb

The traffic
was dreadful last night. It took
me 2456 seconds to drive home.

?

multiplydivide

SDD

Data Representation & Computer Architecture

6

multiplydivide

Task 2 - Practise changing units
In each of the questions below you will have to change the units of the numbers in the
questions.
Remember to use the conversion table

 8 1024 1024 1024 1024
Bits bytes Kb Mb Gb Tb

Submit your answers to your teacher on a piece of scrap paper.

Q1 How many bytes are there in 64 bits?

Q2 How many Kb are there in 8,192 bytes?

Q3 How many Mb are there in 2 Gb?

Q4 How many bits are there in 256 bytes?

Sometimes the same questions are worded differently.

Q5 Convert 4096 Mb into Kb.

Q6 Convert 1,048,576 Kb into Gb.

Q7 Convert 4 Tb into Mb.

Q8 Convert 12 Kb into bits.

The next set of questions require a bit of problem solving as well.

Q9 Dave is offered two USB flash drives for £10 each. One is 10,240 Mb in size and the
other is 12 Gb.
Which one should he buy?

Q10 Wendy wishes to store 20 graphics, each of which 512 Kb in size.
How many Mb of storage will she need to store all the files?

Q11 Which is larger 163,840 bits or 22 Kb?

Q12 How many 64 Gb USB flash drives would you need to store a total of 1 Tb of data?

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 20137

Using Binary to Store Integers

Storing any form of data on a computer creates problems. If the only data that a computer can store is 1s
and 0s using transistors then how do we store numbers, text, graphics, sound and video?

Let’s start by examining how positive, whole numbers (integers) are stored as they are the simplest to
implement.

To explore how integers are stored it’s useful to first re-visit how we learned to count when we were in
Primary 1.

Our number system (called denary) has 10 digits - 0, 1, 2, 3, 4, 5, 6, 7, 8 & 9

When we count we start in the
right hand units column
increasing the number until we
run out of digits.

The next column in our counting
system is 10 for a reason. When
we run out of digits we set the
Units (U) column back to zero
and note that we now have one
10 by placing the digit 1 in the
next (10s) column.

We then keep counting.

Each time a column fills up we create a
new column to store the next number.

We then return to filling up the units
column and then the 10s, then the 100s
and so on.

When counting in binary we use exactly the same process but with only 2 digits, 0 and 1.

67
231

4
34670 0

120344854

Number U
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Number 10s U
10 1 0
11 1 1
12 1 2
13 1 3
14 1 4
15 1 5
16 1 6
17 1 7
18 1 8
19 1 9
20 2 0

Number 1000s 100s 10s U
999 9 9 9
1000 1 0 0 0
1001 1 0 0 1
1002 1 0 0 2
1003 1 0 0 3

SDD

Data Representation & Computer Architecture

8

When counting in Binary it only takes two numbers before our units column is full (there is no 2!).

As before we create a new column but this time the next column is not 10. Instead the next column is 2.
We place a 1 in the new 2s column to show that we have one 2, reset the units column back to 0 and start
counting again.

Every time we fill up all the columns (when every column is 1) we create a new column and set the others
back to 0.

Counting in binary looks
like this.

In our counting system (10 digits) each column is 10 times the previous column.

In binary (2 digits) each new column is double the previous column.

Number 16s 8s 4s 2s U
0 0
1 1
2 1 0
3 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1

Number U
0 0
1 1

Number 2s U
0 0
1 1
2 1 0
3 1 1

2048 1024 512 256 128 64 32 16 8 4 2 U

100000 10000 1000 100 10 U

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 20139

At National 5 you are not expected to count in Binary but it’s useful to understand the process.

You will be expected to convert a number from binary to denary (our 10 digit system) and back again.

1. Binary to Denary

To convert a binary number to a denary number, simply add up the columns where a 1 appears.

Example 1: Convert the binary number 01100100 into a denary value.

 64 32 4 64+32+4 = 100

Example 2: Convert the binary number 11001001 into a denary value.

 128 64 8 1 128+64+8+1 = 201

2. Denary to Binary

To convert a number from denary to binary we reverse the process and place 1s into the columns
ensuring that they add up to the number we are looking for.

Example 1: Convert 94 into a binary number.

 Begin by looking for the largest column
that we can place a 1 into.

We now need our remaining columns to
add up to 30 (94-64 = 30 left). As the 32s
column is too large, the next column we
use will be the 16s column.

We now have 14 left (30-16 = 14)

Continue the process until you find the
remaining columns.

 Finally place zeros in all the columns you
have not filled.
Answer = 01011110

128 64 32 16 8 4 2 U
0 1 1 0 0 1 0 0

128 64 32 16 8 4 2 U
1 1 0 0 1 0 0 1

128 64 32 16 8 4 2 U
1

128 64 32 16 8 4 2 U
1 1

128 64 32 16 8 4 2 U
1 1 1

128 64 32 16 8 4 2 U
1 1 1 1

128 64 32 16 8 4 2 U
1 1 1 1 1

=64

=80

=88

=92

=94

128 64 32 16 8 4 2 U
0 1 0 1 1 1 1 0 =94

SDD

Data Representation & Computer Architecture

10

Example 2: Convert 237 into a binary number.

Task 3 - Binary to Denary & Denary to Binary Practice

Collect the two worksheets titled “Binary to Denary”
& “Denary to Binary” from your teacher.

Complete both sheets and submit them to your
teacher for marking.

Ensure you show your working where required.

A useful fact to remember about binary is that 256 numbers can be stored using 1 byte (or 8 bits):

00000000 to 11111111
or 0 to 255 = 256 different numbers

A Practical Example of Integer Use
Colours are often stored by a computer using 3 numbers to represent red, green & blue (RGB).

The screenshot on the right shows how a colour
can be selected in a graphics application by
changing the rgb values.

When the colour is saved, it is stored as three 8 bit
binary numbers (each one between 0 and 255).

For example R=159,G=73,B=171 would be stored as: 10011111 01001001 10101011
 159 73 171

128 64 32 16 8 4 2 U
1

128 64 32 16 8 4 2 U
1 1

128 64 32 16 8 4 2 U
1 1 1

128 64 32 16 8 4 2 U
1 1 1 1

128 64 32 16 8 4 2 U
1 1 1 1 1

=128 (237-128 = 109 left)

=192 (237-192 = 45 left)

=224 (237-224 = 13 left)

=232 (237-232 = 5 left)

=236 (237-236 = 1 left)

128 64 32 16 8 4 2 U
1 1 1 0 1 1 0 1 =237 Answer = 11101101

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 201311

Using Binary to Store Real Numbers

Real number, or numbers with decimal places are stored using scientific notation.

For example, the number 345.765 would be stored as:

3.45765 x 102

The computer then stores two separate integers with a set number of bits.

The mantissa 3.45765 x 102 1010001100101010

&

The exponent 3.45765 x 102 00000010

The complete number is then stored as one long integer - 101000110010101000000010

Note that the number of bits that a computer uses to store the mantissa and exponent has an effect on the
number stored.

Accuracy

By reducing or increasing the numbers of bits used to store the mantissa we can affect the accuracy of the
number. With increased bits, more decimal places can be stored.

8 bits 3.45

16 bits 3.45765

32 bits 3.45765234323

Size

By reducing or increasing the numbers of bits used to store the exponent we can affect the size of the
number we can store.

4 bits range of 0-15 100 to 1015

8 bits range of 0-255 100 to 10255

What’s Normal for Today

A common representation in today’s computers uses 32 bits to store a real number split up as follows:
Mantissa - 23 bits
Exponent - 8 bits
Signed Bit (used to store if the number is positive or negative) - 1 bit

SDD

Data Representation & Computer Architecture

12

Using Binary to Store Text

Storing numbers using binary is easy as binary is a counting system for numbers. To store text characters
we have to come up with a different solution.

Task 4 - A System for Storing Text

Split into pairs and collect a piece of scrap paper from your teacher.

Your task is as follows:

1. Design a method of storing a single character (A, v, Z etc) using a pattern of 1s and 0s.

2. Once you’ve decided how to store your characters, use your method to write a three
letter binary message for your partner. Give you partner the coded binary message.

3. Now try to decode each others binary messages.

Could you decode the other person’s message?

Unless you are extremely good at decoding messages (and very lucky) you will have discovered that it is
nearly impossible to decode the message without knowing the method your partner used.

Task 4 simulates what happened in the early days of computing when methods of storing text were
developed. The problem with everyone deciding how each character will be stored is that nobody can
understand anybody else’s codes. Any text you save can’t be viewed by anyone using a different code.

As with many developments in technology, eventually most of the methods died out leaving only a few.
From those few, one method now rules.

ASCII (American Standard Code for Information Interchange)

ASCII uses 8 bit binary numbers to represent text characters.

An 8 bit code allows 256 different characters to be stored:

� A-Z - 26 characters
� a-z - 26 characters
� Control Characters (return, tab etc) - 32 characters
� 0-9 - 10 characters
� Punctuation - approximately 20 characters
� Mathematical Symbols - approximately 50 characters

The remaining spaces in the 256
character code are used to store
foreign alphabet letters.

UNICODE

Sometimes even 256 characters is not enough. Another commonly used standard for storing text is the
16 bit Unicode, capable of storing 65,536 different characters.

Denary
Binary

Character

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 201313

Using Binary to Store Bit-Mapped Graphics

A bit-map graphic is made up of rows and columns of pixels.

Zooming into a bit-mapped graphic allows you to
see that each individual pixel has a single colour.

When a bit-map is stored by a computer, each
pixel is stored as a binary number. The binary
number represents the specific colour of that
pixel.

The term “bit-map” comes from the fact that we are mapping each pixel to a sequence of bits.

The number of bits used to store each pixel’s colour is called its “colour depth”. The colour depth
determines the maximum number of possible colours that each pixel can be.

01101101

11000100

2 possible colours 8 possible colours 256 possible colours

SDD

Data Representation & Computer Architecture

14

This is how colour depth works:

If each pixel = 1 bit If only 1 bit is used to store the pixel, then
only a single 0 or 1 can be used. This
would allow to store only two different
colours

 Black and white graphics use 1 bit colour
depth (0 = black, 1 = white)

If each pixel = 3 bits Now we can store binary values from 000
to 111 (0-7). With 3 bits, 8 different
colours (for example - black, white, blue,
red, green, yellow, magenta & cyan) can
be stored.

If each pixel = 8 bits Now we can store 00000000 to 11111111
binary numbers (0-255)

 With 256 colours we now have a far
greater range.

If each pixel = 16 bits A colour depth of 16 bits allows 65,536 possible colours

If each pixel = 24 bits 24 bit colour depth = 16,777,216 colours. (Too many to show!)

 A colour depth of 24 bits is often called “true colour” as beyond 24 bit
colour human eyes can no longer detect the difference between each
individual colour.

If each pixel = 32 bits 32 bit colour depth = 4,294,967,296 possible colours.

1

0

000
001
010
011
100
101
110
111

00000000

11111111

0000000000000000

1111111111111111

to

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 201315

Different types of bit-map files store graphical data using a variety of different colour depths.

▪ a jpg graphic is always 24 bit colour.

▪ a gif file is always stored using 8 bit colour.

▪ a png file can vary its colour depth from 1 bit to 32 bit colour.

Calculating the Storage Requirements of a Bit-Mapped Graphic
To calculate the amount of storage space required to store a graphic we need two pieces of information.

We can then calculate the storage requirements of the graphic as follows.

Storage Requirements = Resolution x Colour Depth

 = 800 x 360 x 24 bits

 = 11,520,000 bits

 = 1,440,000 bytes

 = 1,406.25 Kb

 = 1.37 Mb

Note that the information you need is not always presented to you in a nice easy form.

For example: Consider this question. Calculate the storage requirements of a black and white
graphic with a resolution of 5 inches x 3 inches at 300 dots per inch.

 This example requires you to look harder for the information you need.

 The colour depth is 1 bit - “black and white”
The resolution is 1500 x 900 - “5 inches x 3 inches at 300 dots (pixels) per inch”

1. The resolution of the
graphic is used to calculate
the number of pixels in the
image.
800 x 360 = 480,000 pixels

800

360
2. The colour depth tells us
the number of bits used to
store each pixel.

24 bits per pixel

24 bit

SDD

Data Representation & Computer Architecture

16

Task 5 - Calculating the Size of Bit-mapped Graphics

Collect the worksheet titled “Bit-Mapped
Graphics Calculations” from your teacher.

Complete the sheet and submit it to your teacher
for marking.

It is vital in these questions that you show your
working where required.

Using Binary to Store Vector Graphics

A vector graphic is produced using shapes. The graphic may be simple with only a couple of simple
shapes or be very complicated with thousands of intricate shapes.

Simple - Regular shapes with single colours

Complicated - Irregular shapes with shadows, textures, transparency, gradients, inner glows etc.

When a vector graphic is displayed, the computer system recreates the picture from the individual
shapes. In order to do this it must have enough information stored on each shape to recreate it
precisely.

B H S

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 201317

To store the simple vector
example, the following graphic
properties would have to be
stored for each of the 5 shapes.

For the circle the following properties would be stored.

• The centre point of the circle (its position, x and y coordinate
on screen)

• The size of the circle (its radius)
• The fill colour, light green (rgb - 180, 255, 161)
• The line thickness (1 point)
• The line colour, black (rgb - 0,0,0)
• The layer, back (layer 1)

The triangle would be stored slightly differently.

• The x,y coordinate of each point on the triangle
• The fill colour, dark green (rgb - 0, 201, 55)
• The line thickness (1 point)
• The line colour, black (rgb - 0,0,0)
• The layer, middle (layer 2)

The three characters are also shapes so we have to note their position, colour etc as well.

• The x,y coordinate of each letter
• The character itself (B, H or S)
• The fill colour, black (rgb - 0,0,0)
• The line thickness (0 point)
• The line colour, black (rgb - 0,0,0)
• The font
• The style (bold, underline, italics etc)
• The layer, front (layer 3)

Each of the above properties for each shape would be stored using binary. A common standard file
type used to store vector graphic data is SVG (scalable vector graphic). The properties of each shape,
once encoded in binary, are stored as a list in the vector graphic file.

B
H

S

y
(x,y)

Computer Screen

x

r

HB S

(x2,y2)

(x1,y1)
(x3,y3)

B H S

SDD

Data Representation & Computer Architecture

18

Task 6 - Editing SVG data
The website w3schools.com has some examples of SVG code embedded in HTML.
Open a browser and navigate to the URL below:

http://www.w3schools.com/svg/svg_examples.asp

Click on the “Circle” example, edit the radius of the circle as shown below and then click
Submit Code.

Over the next 15 minutes, try editing code in several different examples. Even without a
detailed knowledge of SVG code you will find that you can work out what much of the code
does.

To store a regular shape, like a circle, is easy as it will always have the same set of properties.

The fill colour, line colour etc of an irregular
shape can be stored in exactly the same way as a
regular shape using a simple list of properties.

Storing the outline of the irregular shape requires
a new approach. An irregular shape requires us to
store the exact angle of each curve or corner in a
way that will allow an application to redraw the
shape once it’s saved.

<!DOCTYPE html>
<html>
<body>

<svg xmlns="http://www.w3.org/2000/svg"
version="1.1">

<circle cx="100" cy="50" r="40" stroke="black"
stroke-width="2" fill="red" />

</svg>

</body>
</html>

http://www.w3schools.com/svg/svg_examples.asp

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 201319

Each curve in a vector graphic object is
determined by two attributes:
● set points on the curve called nodes
● control handles which can be used

to adjust the angle at which the line
enters and leaves the node.

This example has the same 6 nodes as the
example above and the nodes are in the
same position as before.
By moving a few of the control handles
(therefore changing the path of each curve)
a completely different outline can be
produced.

By storing the position of each node along with the curve angles, the outline of any shape no matter
how complicated may be stored.
The examples below have hundreds or thousands of nodes and curves stored in each vector file.

SDD

Data Representation & Computer Architecture

20

Machine Code
We have learned that numbers, text and graphics are all stored as binary. To process all this data requires
a computer program to provide instructions on how to calculate, move, store or display the binary values.

As everything processed in a computer system has to be in binary form it should come as no surprise now
that program code is also stored as binary.

When programmers sit and write programs, they do not however write instructions in binary. Imagine
how difficult it would be to understand, edit and find mistakes in long sequences of 1’s and 0’s.

01010101000101000100101010010010000101101010101010
10100101010101000101000100101010010010000101101010
00111010100101010100010100010010101001001000010111
11101010101001010101000101000100101010010010000101
01101010101010010101010001010001001010100100100001
01101010101010

It’s much easier to write a program using an English based programming language and then translate it
into binary so that the computer can then understand and process the code.

High Level Language (program written in English)

Low Level Language (translated binary version)

Computer program code in binary form is called machine code.

0101010101000101000100101010010010000101101010101010101001010
1010100010100010010101001001000010110101000111010100101010100
0101000100101010010010000101111110101010100101010100010100010
0101010010010000101011010101010100101010100010100010010101001
0010000101101010101010010101010001010001001010100100100001011
0101010101010100101010101000101000100101010010010000101101010
0011101010010101010001010001001010100100100001011111101010101
0010101010001010001001010100100100001010110101010101001010101
0001010001001010100100100001011010101010100101010100010100010
0101010010010000101101010101010101001010101010001010001001010
1001001000010110101000111010100101010100010100010010101001001
0000101111110101010100101010100010100010010101001001000010101
1010101010100101010100010100010010101001001000010110101010101
0010101010001010001001010100100100001011010101010101010010101
0101000101000100101010010010000101101010001110101001010101000
1010001001010100100100001011111101010101001010101000101000100
1010100100100001010110101010101001010101000101000100101010010
0100001011010101010100101010100010100010010101001001000010110
1010101010101001010101010001010001001010100100100001011010100
0111010100101010100010100010010101001001000010111111010101010
0101010100010100010010101001001000010101101010101010010101010
00101000100101010010010000101101010101010

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 201321

Computer Architecture
To process data requires program instructions (machine code) and the data (binary) itself. The method
used to process data stored in a computer systems has not changed since the early days of computing.
Processing instructions and data involves two of the main components in your computer system.

The computer’s memory
(RAM) stores program instructions

and data while they are being used.

The processor decodes and
carries out each program

instruction. These
instructions often involve fetching and
processing the data stored in memory.

If program instructions and data are held in the computer’s memory but are processed by the processor
there must be a connection of some sort joining the two components.

The surface of a motherboard is fitted with
groups small, surface wires which provide
physical connections between the different
components on the motherboard.
The wires are manufactured on both sides of the
motherboard but are easier to see on the bare
underside of the circuit board.

The groups of wires that connect the memory to the processor are called buses. There are three buses
connecting the memory and processor (address, data and control) each with its own function.

Processor (underneath the fan)

Memory modules (fitted into DIMM slots)

SDD

Data Representation & Computer Architecture

22

To discuss this further we can represent the memory, processor and three buses in the form of a diagram.

Memory Addresses
When the processor fetches instructions and data from the memory it must know where to find them. The
memory in a computer is organised into separate storage locations.

Each memory location will be capable of storing a
set number of bits depending on the age and design
of the computer. 64 bits is fairly common for a
modern computer.

In a single RAM module there may be millions of
memory locations each one containing a program
instruction or item of data.

In order to find each memory location they are all
numbered. Memory location numbers are known as
addresses.
The processor uses the addresses to select the
location which contains the program instruction or
data to process next.

The concept of memory locations, each with its own
unique address is called addressability.

MemoryProcessor

Address Bus

Data Bus

Control Bus

Memory

010111110000101110101010000111010

110111110000101110101010000111111

000111110011101110101010010111011

001010111001011011101010010111011

110101110100101110101010010111010

010101100100101000101010010110111

010111110000101110101010000111010

010111110000101110101010000111010

110111110000101110101010000111111

000111110011101110101010010111011

001010111001011011101010010111011

110101110100101110101010010111010

010101100100101000101010010110111

78,567
78,568
78,569
78,570
78,571
78,572

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 201323

Processor Components
A computer processor has three main components. The ALU (arithmetic logic unit), Registers and the
Control Unit.

Registers
Registers are memory locations built into the processor in
order to store temporary data during processing.
Temporary storage is required as it make take a processor
several steps to complete a task.
For example, if the processor was performing the
following calculation (5+4) - (6+1), it would…
● add the 5+4 first and store the answer 9 in one of the

registers
● add 6+1 and store 7 in the registers
● fetch the two stored values from the registers
● subtract the 9-7 to calculate the final result.

Arithmetic Logic Unit
The second part of the processor carries out any
calculations (arithmetic) required and makes decisions
(logic).
Decisions often involve doing some sort of comparison.
For example:

A computer program for the above example would have two sets of instructions (one for each message).
The ALU would compare the “score” with the number 16 to decide which set of instructions should be
processed next.

Control Unit
Modern computers are capable of performing billions of calculation every second. At these speeds it is
import that all the events occur within a processor in the correct order.
The control unit is responsible for the timing of events within the processor. It does this by means of a
clock pulse or by stopping and starting different processes.

Processor

Registers

Arithmetic
Logic Unit

Control Unit

If score<16

True

False

Display message - “You have failed
and must study harder.”

Display message - “Congratulations,
you have passed.”

SDD

Data Representation & Computer Architecture

24

It’s important to point out that our
processor diagram is a very simplistic
view of a modern processor which
contains thousands of microscopic
components.

This is a diagram of AMD’s “Bulldozer”
processor design released in 2011.
As you can see, the complexity of modern
processor design is significantly different
from our model.
Thankfully you do not need to learn this
model for National 5!

The Role of Buses in Processing
When instructions and data are transferred from the memory to the processor the following steps are
carried out.

Memory Read
1. The address bus is used to select

the address of the desired memory
location.

2. The control bus sends a signal to
activate the transfer.

3. The machine code instruction (or
data) in the selected location is sent
along the data bus to the processor.

When data is transferred from the processor back to the memory the following steps are carried out.

Memory Write
1. The address bus is used to select

the desired memory location.
2. The control bus sends a signal to

activate the transfer.
3. The data is sent along the data bus

to the selected location.

Note - The address bus is one directional as it only ever sends address information from the processor
to the memory. The data bus is bi-directional as data can travel to and from the processor.

MemoryProcessor

Address Bus

Data Bus

Control Bus

MemoryProcessor

Address Bus

Data Bus

Control Bus

Data Representation & Computer Architecture

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Sept 201325

Interfaces
Processing often involves receiving data from peripheral devices or sending data to peripheral devices.

In a simple world, all these devices would work at the same speed, use
the same type of connection, the same of electrical signals and format
data the same way. Unfortunately with thousands of different
manufactures producing computer peripherals this will never happen.
The role of an interface is to provide a bridge between the motherboard and peripheral devices,
compensating for differences in the speed they work at and the methods they use to transfer data.

An interface may be a component on the motherboard itself or may be purchased as a separate
specialised devices.

Separate interface devices (like the sound and graphics cards shown) will often have their own
processing capability. This improves the processing power of your computer system as the main
processor is freed up to concentrate on other tasks.

Keyboard & Mouse
Monitor

USB Interfaces

Speakers and
Microphone

Network
Interface

SDD

Data Representation & Computer Architecture

26

Task 7 - Computer Architecture Revision

Having a good understanding of facts will help you to answer problem solving questions in
the National 5 exam.
Use the previous pages to research and type up answers for the following knowledge &
understanding style questions.
1. Name and describe the function of the following internal processor components:

 Arithmetic Logic Unit
 Control Unit
 Registers

2. State one difference between the data bus and the address bus..
3. Explain the need for each storage location in memory to be allocated a unique address.

Use the world wide web to research the answers for questions 4 & 5.
4. Together the memory and processor are called the CPU. State what the letters CPU

stand for.
5. The iPhone 5S was the first mobile phone to have a 64 bit processor. What does the

term “64 bit processor” tell us about the architecture of the phones CPU and buses?

Print and submit your answers to your teacher.

Variables - How Computer Programs Store Data
Computer programs are written to input, process and output data. To achieve this, the data being used or
created by a program has to be stored in memory.
When declaring memory locations to store the data (called variables in programming) the program will
allocate a different a numbers of locations depending on the type of data being stored.

Integers 32 or 64 bits may be allocated to storing a single integer. Depending on the size of
each memory location this will usually equate to only 1 or 2 locations.

Real Numbers Again 1 or 2 locations may be allocated to storing a real number. The memory
locations may be split with part of the location being used to store the mantissa and
part being used to store the exponent.

Characters Using ASCII code only 8 bits are required to store a single character. One character
will easily fit into a single 32 or 64 bit memory location in a modern computer.

Strings A string is a list of characters (word or sentence) and will require multiple memory
locations to store the data.

Arrays An array is a structure that stores multiple values. The number of locations will
depend on the type of data being stored and how many examples of that data.
For example, an array of 1000 integers may require 1000 memory locations to be set
aside.

