
Computing
Studies

&

Software Design
 and Development

Programming
Theory

Version 1

Buckhaven High School

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 20141

Contents
Page 2 How to use this booklet
Page 3 Introduction
Page 4 High Level Languages
Page 6 Designing Computer Programs

Flow Charts
Page 8 Pseudocode
 Structure Charts
 Agile
Page 9 Programming Constructs
Page 10 Programming Constructs and Pseudocode
 Assigning Values to Variables
Page 11 Arithmetic Operations
Page 12 Concatenating Strings
Page 13 Simple Selection Constructs
Page 14 Complex Selection Constructs
Page 15 Iteration and Repetition
Page 16 Pre-Determined Functions
Page 18 Identifying Programming Constructs in Pseudocode
Page 20 Testing
Page 21 Errors in Programs
Page 22 Readability of Code
Page 23 Translating Programs

SDD

Programming Theory

2

How to use this booklet
This booklet has been written to cover the following content in National 4 and National 5 Computing.

The booklet is colour coded as shown above.

For assessment purposes, pupils working at National 4 level should revise only the N4 content.
Pupils attempting National 5 assessments, coursework or final exam should study only N5 content.
(N5 pupils may wish to revise N4 content anyway to improve their overall knowledge of the subject.)

National 4 National 5
Computational Constructs Exemplification and implementation

of the following constructs:
� expressions to assign values to

variables
� expressions to return values using

arithmetic operations
(+,-,*,/,^)

� execution of lines of code in
sequence demonstrating input -
process - output

� use of selection constructs
including simple conditional
statements

� iteration and repetition using fixed
and conditional loops

Exemplification and implementation
of the following constructs:
� expressions to assign values to

variables
� expressions to return values using

arithmetic operations
(+,-,*,/,^,mod)

� expressions to concatenate strings
and arrays using the operator

� use of selection constructs
including simple and complex
conditional statements and
logical operators

� iteration and repetition using
fixed and conditional loops

� pre-determined functions (with
parameters

Data Types and Structures string
numeric (integer) variables
graphical objects

string, character
numeric (integer and real)
boolean variables
1-D arrays

Testing and Documenting
Solutions

� normal, extreme and exceptional
test data

� readability of code (internal
commentary, meaningful
variables names)

� normal, extreme and exceptional
test data

� syntax, execution and logic errors
� readability of code (internal

commentary, meaningful
variables names)

Algorithm Specification Exemplification and implementation
of algorithms including
� input validation

Design Notations
(also applies to ISDD)

� graphical to illustrate selection
and iteration

� other contemporary design
notations

� pseudocode to exemplify
programming constructs

� other contemporary design
notations

Low Level Operations and
Computer Architecture

Translation of high level program
code to binary (machine code):
interpreters and compilers

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 20143

Introduction

To create a functioning, useful computer two things are required:

� hardware - the different physical components of the computer

� software - the programs that run on the computer

Programs are lists of instructions that tell the computer’s hardware what to do. Without instructions
(or programs) a computer is a useless collection of electronics.

Instructions found in computer programs are vast and varied but they essentially fall into one of the
following categories:

� inputting data
for example - getting input from a keyboard or receiving a reading from a sensor

� outputting data
for example - sending an image to a monitor or switching on a motor

� processing data
for example - making a decision (is 10 larger than 6) or performing a calculation

In the early days of computing, programs would be written in binary. The binary 1s and 0s would be
entered via switches, punched tape or punched cards.

SDD

Programming Theory

4

High Level Languages

Writing lengthy binary programs is very time consuming and extremely difficult to get right. A single
mistake in a 0 or 1 would cause the program to fail and is almost impossible to find.

Today’s computer programs are written in English using an editing program. The English instructions
are then translated into binary instructions that the computer can understand.
The example below shows a Python program written in English.

Python is one of hundreds of programming languages that use English instructions. Programming
languages that use English based instructions are called ‘high level languages’.
Each language has its own set of rules describing exactly how each instruction should be written.
This is called the ‘syntax’ of the programming language.

A Binary Program

A Python Program

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 20145

Task 1 - Different Syntax, Same Result
When users learn to program they often start with the instruction required to display, or
print, the text “Hello World” on the screen.
If you search the world wide web for “print hello world in Python” you will find that the
syntax for the instruction to do this is:

print(“Hello World”)

Your task is to research the correct syntax required to display “Hello World” in all the
programming languages listed below.
Copy and complete the table below.

E-mail your completed file to your teacher.

Novice high level language programmers have to learn two things at the same time.
● language syntax - how to write/format each type of instruction, where to put commas, brackets,

spaces, indentation etc
● problem solving - how to put instructions together to make a program do what you want it to do

This can be a very challenging, frustrating process. A lot of
practice is required to become a good computer programmer.

Name of programming language Syntax to display “Hello World”

Python print (“Hello World”)

Java

C

Visual Basic

PHP

Javascript

SDD

Programming Theory

6

Designing Computer Programs
A good programmer develops the ability to take a problem apart and design a method of solving it. The
solution must be developed in such a way that it can be programmed. This type of problem solving is
called computational thinking.
With larger or more complex problems, programmers may use a variety of methods to design their
program.

Flow Charts
A flow chart may be used to sketch out the order in which events take place. Flow charts are good at
showing clearly when decisions are made in a problem as the flow chart will branch in two or more
directions.

The symbols in a flow chart represent either information or events.

The symbols are connected by arrows, representing the flow from start to end.

This flow chart to the right is a design for a
game where the user has to guess a random
number between 1 and 100.
The flow chart shows:
● a start
● a sub process where the computer

generates the random number
● three messages displayed to the user of

the program
● one manual input from the keyboard
● a decision - is the guess right or wrong
● an end

Start or Stop Point An Event or Action A Decision A Sub Process Manual InputDisplay a Message

Start

Generate a random
number between 1

and 100

Guess entered
using keyboard

Is the
users number the

same as the random
number

“Well Done!”

End

Yes

Display “Sorry,
guess again”No

“Please guess the
number”

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 20147

Task 2 - Flow Chart Problems
Initial designs for a program may often be a scribble on a piece of blank paper. By
scribbling down their first ideas, a programmer can think through the problem and then
create a more formal design.
On a sheet of blank paper, draw out a design for the three problems below. Use pencil as
you may often change your mind.
Remember the basic flow chart symbols.

Problem 1

A program is needed to allow Nursery children to test their animal knowledge. The
program will:

● show a random picture of an animal
● ask if the animal is awake during the nighttime or the daytime
● add 1 point on to their score if the pupil answers correctly
● when the pupil scores 10 points don’t show any more pictures
● show a message congratulating the pupil for getting 10 correct answers.

Problem 2

A computer program asks its user to enter the age of each member of their family one at a
time. The program will add each age onto a total. The program will stop asking for ages
to be entered when the user enters 0. When all the ages have been entered the program
will display the average age of the family members.

Problem 3

A program is required calculate a player’s score in
the card game Hearts. The player scores 1 point for
each card in their hand that is a heart. There are 13
cards in a hand.

Start or Stop Point An Event or Action A Decision

A Sub Process Manual InputDisplay a Message

SDD

Programming Theory

8

Pseudocode
Another common design method used in programming is pseudocode.
The term pseudocode comes from the word:
 ‘pseudo’ - pretending to be something else
 ‘code’ - as in program code
Pseudocode designs look very similar to program code but pseudocode is written in natural language
(just as you would normally write in English) and has none of the strict syntax rules associated with a
programming language.
An example of a pseudocode design is shown below.

An algorithm is an outline of how a problem is solved. This is shown in lines 1 to 8.
Three of the lines (2, 4 and 7) have been expanded to show more detail about how these sub-problems
would be solved. These are called refinements.
The process of starting with an algorithm that is expanded is called ‘top-down design’.

Other Design Methodologies
Structure charts are another method of top down
design. They use blocks to show how a larger
problem is broken up into sub-problems.

Agile software development is a design method that
avoids paperwork. Teams working on a agile project
work in a close groups (called bullpens) relying on
regular face-to-face meetings. Each team contains all
the necessary skills to design and develop a project.
The aim of agile development is produce a working piece of software very quickly (about 3 to 4 weeks)
in blocks of time called iterations. Each iteration becomes a miniature project on its own. After each
iteration the team will meet to discuss what should be produced next.

Line 1 SET totalRunningTime TO 0
Line 2 <Get valid numberOfTracks from user>
Line 3 FOR counter FROM 1 TO numberOfTracks DO
Line 4 <Get title and length from userr>
Line 5 SET totalRunningTime TO totalRunningTime + trackLength[counter]
Line 6 END FOR
Line 7 <display track titles and track lengths>
Line 8 SEND [“CD-R running time ” & totalRunningTime] TO DISPLAY

Line 2.1 REPEAT
Line 2.2 RECEIVE numberOfTracks FROM (INTEGER) KEYBOARD
Line 2.3 IF numberOfTracks < 1 OR numberOfTracks > 20 THEN
Line 2.4 SEND “Please enter number of tracks between 1 and 20” TO DISPLAY
Line 2.5 END IF
Line 2.6 UNTIL numberOfTracks >= 1 AND numberOfTracks <= 20

Line 4.1 RECEIVE trackTitle[counter] FROM (STRING) KEYBOARD
Line 4.2 RECEIVE trackLength[counter] FROM (REAL) KEYBOARD

Line 7.1 FOR counter FROM 1 TO numberOfTracks DO
Line 7.2 SEND [trackTitle[counter] & trackLength[counter]] TO DISPLAY
Line 7.3 END FOR

Algorithm

Refinements

Problem

Sub-Problem
1

Sub-Problem
2

Sub-Problem
3

Refinement of
Sub-Problem 2

Refinement of
Sub-Problem 2

A Structure Chart

}
}

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 20149

Programming Constructs
A program is constructed from building blocks called
constructs. When designing a computer program, the
designer will consider these building blocks as they
construct a plan of attack.

Common constructs are:

� Assigning values to variables
Variables are used in programs to store values (text and numbers). To ‘assign’ a value to a variable
simply means to store a value in that variable.

� Arithmetic operations
Programs input, process and output data. Often the processing takes the form of a calculation or
‘arithmetic operation’. For example, calculating an average of several values.

� Selection constructs
These constructs are used to make decisions by comparing
values. These comparisons are also known as conditions.
Some examples of conditions are shown below:
 11 > 2
 number <= 27
 word = “Edinburgh”
The program may carry out different processes if the
conditions are found to be true or false. This is called
branching as the program ‘branches’ in different directions.

� Repetition
Programs often repeat instructions.
There are two types of repetition in programs:

Unconditional repetition is when a program is written to
repeat a set number of times. For example if a program
needed to stored a value for each day of a week it would ask
7 times for a value to be entered.

Conditional repetition is found when a program
keeps repeating until a condition is true. For
example, if a program asks a user to enter a test score
greater than 0, conditional repetition could be used to
keep asking for the score to be entered until the user
enters a valid score.

temperature > 30

“Turn heating off”

Yes

“Keep heating on”
No

Selection and
branching shown
in a flow chart

Is counter = 7

Enter weather
summary

Add 1 to counter

Set counter to 1

Is score > 0

Enter score

“Score not valid”

“Enter a test score
greater than 0”

Yes

No

Yes

No

SDD

Programming Theory

10

Programming Constructs and Pseudocode

When designing a program, the programming constructs used to solve the problem will be written out in
the pseudocode. Examples of each construct are shown over the next few pages.

� Assigning Values to Variables

There are several types of data stored and processed by computer programs.
Integers whole numbers
Reals numbers with decimal places
Characters a single letter, punctuation symbol or number
Strings a group of characters, usually a word or sentence
Boolean a true or false value

Arrays To store multiple integers or multiple strings we would use an array structure.
 For example, to store an list of 100 names we would use ‘an array of strings’.

The pseudocode for an assignment should show:
○ Where the value is being stored.

This will be the name of the variable or array the value will be stored in.
○ Type of value being stored.

Is it an integer, real, character, string or boolean value.
○ How the value is assigned.

Is the data entered by a user (probably using a keyboard) or is it assigned by the program itself.

Examples
SET number TO 973 Where - The value is being stored in a variable called ‘number’.

Type - An integer (973) is being stored.
How - The program is storing the value.

SET name TO “Greg” Where - The variable is called ‘name’.
Type - String (Greg).
How - The program is storing the value.

SET score[3] TO 12.6 Where - The value is being stored in an array called ‘score’. The []
tell us that it is an array structure.
Type - Real (12.6).
How - The program is storing the value.

RECEIVE stockItem FROM (STRING) KEYBOARD
Where - The variable is called ‘stockItem’
Type - String.
How - The user is entering the value using a keyboard.

RECEIVE temperatureReading FROM (REAL) SENSOR
Where - The variable is called ‘temperatureReading’
Type - Real.
How - The value is created by a sensor and passed to the computer.

194
“Throne”

X 17.68

True

Storage

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 201411

Task 3 - Writing Assignment Statements in Pseudocode
Using pseudocode, write a design for the following small problems. Remember to consider
where, type and how in your pseudocode statements.
1. A program stores that a car’s fuel consumption is 56mpg.
2. A program stores that a user purchased 124 collectable cards last week.

A program inputs the number of cards purchased using the keyboard.
3. A program uses keyboard entry to store the names of 50 choir members in

an array. Show how the 5th name would be stored in the array.

� Arithmetic Operations

As stated earlier, all programs process values and this often takes the form of a calculation.
Calculations may be part of an output statement (sending an answer directly to a monitor) or an
assignment, as the answers to the calculations are often stored in variables.
There are a few types of calculation commonly seen in programs.
Simple 12+3, 4*4, 5/8, 45-34
 These usually involve a couple of values.
Complex (75+3)/(34*56)
 These may involve a few separate calculations. Note that the normal rules you learned
 in maths apply in these example (*, / before +, - and calculate the parts inside brackets
 first)
Variables totalScore/12, testOne+testTwo
 Calculations involving other variables.
Functions mod(35/4), int(75.3), round(99.52583,3), 25^2
 Functions perform extra tasks in calculations like rounding or squaring numbers.

The pseudocode should show:
○ Where the answer to the calculation being stored or where it is being sent.

This will be the name of the variable or a device like a monitor or printer.
○ Calculation being carried out.

The details of the calculation being performed using values or other variables.

Examples
SET price TO 45+34/6 Where - The answer is being stored in a variable called ‘price’.

Calculation - 45+34/6.

SET total TO num1 + num2 Where - The answer is stored in ‘total’.
Calculation - num1 + num2. This calculation adds together the
values stored in two other variables.

SEND 2^20 TO DISPLAY Where - The answer is displayed on the computers monitor.
Calculation - 2^20 (or 2 to the power of 20)

SDD

Programming Theory

12

Task 4 - Writing Calculation Statements in Pseudocode
Using pseudocode, write a design for the following small problems. Remember to
consider where and calculation in your pseudocode statements.
1. A line of program code is required to find and store the answer to the following

calculation: 12 multiplied by 45 plus 6
2. A program is required to calculate and store the cost of 10 bikes costing £125 each.
3. A program asks the user to enter the number of 1p coins they have collected in a jar.

The program should then display the amount they have saved in pounds.
(Note - this requires 2 lines of pseudocode)

4. A program asks its user to type in their age and then also type the
number of months since their birthday. A calculation is then performed
to work out how many months they have been alive. The program
should store the answer.
(Note - this requires 3 lines of pseudocode)

5. A program asks a user to enter the amount they have spent in one week and the
amount of money they earned in the same week. The amount they saved will be sent
to a printer.

� Concatenating Strings

Concatenation is when two or more strings or variables are joined together to make one string.
Concatenations may involve:
Strings Only “Toy” & “Story”
 Concatenated this would be “ToyStory” without a space between the two
 words.
Variables Only forename & surname
 The variables used would have to be string variables
Variables and Strings “Age = “ & age
 This is often used to create a message using text and stored variables.

The pseudocode should clearly show the difference between the name of a variable and a piece of text
by using “”:
score is a variable
“score” is text

Examples
SET errorMessage TO [“Device failed due to ” & faultNumber] one string and one variable

SEND [firstName & surname] TO DISPLAY two variables

SET password TO [“agd” & “12” & “kjy”] three strings

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 201413

Task 5 - Concatenation Statements in Pseudocode
As before you will be asked to write pseudocode designs for the following problems. The
problems will require assignment, arithmetic and concatenation statements in the one
design.
1. A program asks its user to enter and store the number of times they brushed their teeth

this week and the number of minutes they brush their teeth for. The two numbers
should then be multiplied together to calculate the total number of brushing minutes.
The answer should be displayed along with a suitable message.

2. A program is required to store a username for a website. The program will ask the
user to enter their favourite word along with the day and month they were born. The
username will be generated by joining the word to the day multiplied by the month.
(For example - ‘trepidation, 20, 5’ would give a username of ‘trepidation100’)

� Simple Selection Constructs

Selection is required when a program must make a decision whether or not to execute a line (or
block) of code. A simple selection (often called a ‘condition’) involves the use of operators to
compare two values or variables.
A list of operators are shown below:
 = Equal to
 > Greater than
 < Less than
 >= Greater than or Equal to
 <= Less than or Equal to
 <> Not equal to

Selection constructs may be found in IF statements and conditional loops. The examples below will
only look at IF pseudocode statements as conditional loops are covered later.

Examples
IF temperatureNow >= 100 THEN SEND “Water is in a gaseous form at this temp” TO DISPLAY
The above example compares the value stored in the variable ‘temperatureNow’ to 100. If the value
stored in the variable is greater or equal to 100 (if the conditions are ‘true’) the message is displayed.

IF temperatureNow >= 100 THEN
 SEND “Water is in a gaseous form at this temp” TO DISPLAY
 SEND “This is called steam” TO DISPLAY
END IF
If a selection statement is true, more than one line of code may be executed as shown above.

IF temperatureNow >= 100 THEN
 SEND “Water is in a gaseous form at this temp” TO DISPLAY
ELSE
 SEND “Water is a liquid or a solid at this temp” TO DISPLAY
END IF
A simple IF statement executes an instruction if the conditions are true, the above example uses an
ELSE statement to execute another instruction if the conditions are not true (false).

SDD

Programming Theory

14

� Complex Selection Constructs

A complex selection construct involves two or more conditions. The conditions are joined together
using the logical operators shown below:

AND Both conditions must be true
OR Either condition may be true
NOT The condition must be false

Again complex selection constructs may be found in IF statements and conditional loops. The
examples below will only look at IF pseudocode statements.

Examples
IF temperatureNow > 0 AND temperatureNow < 100 THEN
 SEND “Water is in a liquid at this temp” TO DISPLAY
END IF
The above has two conditions. Both conditions must be true before the message is displayed.

IF temperatureNow <= 0 OR temperatureNow >= 100 THEN SEND “Water is not a liquid at this
temp” TO DISPLAY
If either selection statement is true the message is displayed.

IF NOT(temperatureNow > 0) THEN
 SEND “Water is solid at this temp” TO DISPLAY
END IF
NOT conditions are harder to follow. The program would check to see if the condition inside the
brackets is true. If the condition is true (the temperature is greater than 0) the message isn’t displayed
as the NOT operator states that it must now be false to be displayed.

Task 6 - Selection Constructs in Pseudocode
All of these problems will involve writing pseudocode designs with simple or complex
selection constructs.
1. A program asks its user if they wish to enter more data. The user should enter Y

or N. Design a single line of pseudocode that will display a message stating
“Are you sure?” if the user enters N.

2 A program users two variables to store two players scores (player1score and
player2score). Write a simple selection statement that will display a suitable message
if player 1 has a greater score than player 2.

3. A program decides if a car saleperson has earned a bonus. A message saying “bonus
earned!” should be displayed if the employee has sold more than 50 cars. A bonus of
£500 should also be stored using a suitable variable name.

4. Show how could the pseudocode in problem 3 can be expanded to display a message
“no bonus” and store a bonus of £0 if the salesperson does not sell 50 cars.

5. A program asks a user if they wish to enter more data. The user should enter Y or N.
Design a line that will display an error message if the user does not enter Y or N.

6. A quiz asks a user what the chemical symbol for Oxygen is. Design a line that
displays “Sorry, you are incorrect” if the user enters anything other than O

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 201415

� Iteration and Repetition

It is common for programs to repeat lines of code. There are two types of repetition in programs that
can be represented using pseudocode:
Unconditional (or Fixed) Loop This is when the number of times the program code will be

repeated is known.
Conditional Loop This is when the code is repeated until a selection construct

(a condition) is found to be true.

The pseudocode should clearly show the start and end
of the loop using indentation, where the middle lines
of the pseudocode (the ones being repeated) are moved
in a bit from the left.

Unconditional Loop Examples
FOR loop FROM 1 to 10 DO

 RECEIVE nextInput FROM (REAL) KEYBOARD
 SET totalCost TO totalCost + nextInput

END FOR
The above loop counts from 1 to 10 (using a variable called ‘loop’ to store the place in the count)
repeating the two lines in between 10 times. This is therefore an example of an unconditional loop.

REPEAT 10 TIMES
 RECEIVE nextValue FROM (REAL) KEYBOARD
END REPEAT
This example of an unconditional loop also repeats the code 10 times but does not have a variable to
count the place in the loop.

Conditional Loop Examples

REPEAT
 RECEIVE pressureLevel FROM (REAL) SENSOR
UNTIL pressureLevel >= 0 AND pressureLevel <= 200
The loop has conditions at the end of the loop (post-condition). The code in the loop will always be
executed once before the conditions determine whether or not the code will then be repeated.

WHILE pressureLevel > 70 DO
 RECEIVE pressureLevel FROM (REAL) SENSOR
END WHILE
This conditional loop has its conditions at the beginning of the loop (pre-condition). This loop will
keep repeating while pressureLevel is greater than 70. Note that if pressureLevel is already <= 70 the
loop will never be executed and the program will move on to the next line.

Start of loop
 First line
 Second line
 Third line
End of loop

8 times

num > 5

SDD

Programming Theory

16

Task 7 - Writing Repetition Statements in Pseudocode
Using pseudocode, write a design for the following line or lines of code.
1. A program asks its user to enter the number of hours of television they watch each day

of the week. Each value they enter is added on to a total. Once all 7 values are
entered the final total is displayed along with a suitable message.

2. A computer program is used to analyse the speed of a cyclist
during a training exercise. The program uses a sensor to
continually input the speed until the cyclist reaches 25mph.
When the cyclist is travelling at 25mph or more a light is
switched on to indicate this to the cyclist.

3. If you used a pre-condition loop for question 2 then rewrite
your pseudocode using a post-condition loop.
Or, if you used a post-condition loop for question 2 then rewrite your pseudocode
using a pre-condition loop.

4. A simple two player game is to be written as a computer program. Both players enter
a number between 1 and 10. If the numbers are different 1 is added to a counter. The
program will continue to ask for two numbers to be entered by the players until both
players enter the same number. At the end of the game the counter is used to display a
message stating the number of attempts the players had before they entered the same
value as each other.

� Pre-Determined Functions

Pre-determined functions are built in features of programming languages that perform tasks or
calculations. There are many common functions that can be found in most programming languages.
These common functions are often used in program design methods, like pseudocode.
Common pre-determined functions:
Modulus This mathematical function calculates the remainder when one number

is divided by another.
Length This function calculates the number of characters in a string and returns

a integer.
Integer This function removes the decimal places from a real number leaving

just the integer (23.85 becomes 23)
Lower Case Converts a string to all lower case letters.
Upper Case Converts a string to all upper case letters.
Ord Converts a single characters to its ASCII code number.
Chr Converts an ASCII code value to its equivalent character.
Round This will round a real number to a given number of decimal places.
Random Number This function will generate a random number between given limits.

The pseudocode should clearly show the function being used followed by the value or variable the
function is being applied to in brackets. For example length(firstname).

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 201417

Examples
SET lengthOfWord TO length(“computing”) Calculates that there are 8 characters in

“computing” and stores the result in the
variable ‘lengthOfWord’

SET numberToGuess TO random(1,100) Generates a random number between 1 and
100 and stores the result in the variable called
‘numberToGuess’.

SEND [“The average is:” & round(average,2)] TO DISPLAY
This examples rounds the value stored in
‘average’ to 2 decimal places, concatenates it
with a message and displays the result.

RECEIVE selectedOption FROM (CHARACTER) KEYBOARD
WHILE ord(selectedOption) < 65 OR ord(selectedOption) > 70 DO
 RECEIVE selectedOption FROM (Character) KEYBOARD
END WHILE This example shows how the ord function

could be used to ensure that the user of a
program enters a single character between
A(65) and F(70).

Task 8 - Pre-Determined Functions Constructs in Pseudocode
All of these problems will involve designing several lines of pseudocode using all the
constructs covered in the previous pages. Each problem will require at least one pre-
determined function.
1. A program asks its user to select a new account name. The user is informed that the

name should be at least 10 characters long. If the user enters a name of less than 10
characters they should be asked to enter another account name. This process should
be repeated until an acceptable name is entered.

2. A Program is required to generate a 4 digit PIN number for new bank customers.
The program should select 4 random numbers between 0 and 9. Each number should
be joined to the previous number creating a 4 character string (2471). The PIN
number should then be sent to the printer in order that it can be posted to the
customer.

3. A program asks its user to enter the length and
breadth from the plans of a garden deck in
metres. Assuming the planks of wood for the
decking are 2m long and 0.2m wide, design a
program that will calculate the number of
planks required to build the deck.
An example output for the program is shown
below:

 Deck Area = 20.56 metres square
Plank Area = 0.4 metres square
Number of whole planks needed = 51
Part of plank left over = 0.4

SDD

Programming Theory

18

Identifying Programming Constructs in Pseudocode

Understanding a program design involves first identifying the
purpose of each small part of the design. Like a jigsaw puzzle,
once you see how the pieces fit together, you can build the larger
picture of the purpose of the whole design.

Now that you have practiced writing pseudocode designs you
should find it fairly easy to identify the different constructs in a
larger design.

Worked Example

Problem - The manager of a school cafeteria wants to use a computer system to calculate how much
each customer has to pay. Members of staff have to pay VAT on their purchases but pupils do not.
If the customer is a member of staff then the program will calculate the VAT and add it to the total
cost.

VAT is calculated using the formula: VAT = 0.175 × total cost

Pseudocode
Line 1 RECEIVE numberOfItems FROM (INTEGER) KEYBOARD
Line 2 <Calculate the total cost of purchases>
Line 3 <Get valid type of customer>
Line 4 SET vatTotal TO 0.175 * totalCost
Line 5 <Calculate final cost>
Line 6 <Display purchase details>

Line 2.1 SET totalCost TO 0
Line 2.2 FOR loop FROM 1 TO numberOfItems DO
Line 2.3 RECEIVE itemPrice FROM (REAL) KEYBOARD
Line 2.4 SET totalCost TO totalCost + itemPrice
Line 2.5 END FOR

Line 3.1 REPEAT
Line 3.2 RECEIVE customerType FROM (CHARACTER) KEYBOARD
Line 3.3 IF customerType ≠ P AND customerType ≠ S THEN
Line 3.4 SEND “Please enter P or S” TO DISPLAY
Line 3.5 END IF
Line 3.6 UNTIL customerType = P OR customerType = S

Line 5.1 IF customerType = P THEN SET finalCost = totalCost
Line 5.2 IF customerType = S THEN SET finalCost = totalCost + vatTotal

Line 6.1 SEND [“Total cost of purchases: ” & totalCost] TO DISPLAY
Line 6.2 SEND [“Type of customer: ” & customerType] TO DISPLAY
Line 6.3 SEND [“VAT: ” & vatTotal] TO DISPLAY
Line 6.4 SEND [“Final Cost: ” & finalCost] TO DISPLAY

Assignment

Assignment & Arithmetic

Assignment

Assignment

Fixed Loop

Assignment & Arithmetic

Conditional Loop (Complex)

Assignment

Selection (Complex)

Selection (Simple)
& Assignment

Selection (Simple)
& Arithmetic

Concatenation (String + Variable)

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 201419

Task 9 - Identifying Programming Constructs
The pseudocode design below shows a main algorithm (lines 1 to 8) and refinements of
lines 2,4 & 7.
Part 1
Your task is to identify the programming constructs labelled 1 to 10 next to the pseudocode.

Pseudocode
Line 1 SET totalRunningTime TO 0
Line 2 <Get valid numberOfTracks from user>
Line 3 FOR counter FROM 1 TO numberOfTracks DO
Line 4 <Get title and length from userr>
Line 5 SET totalRunningTime TO totalRunningTime + trackLength[counter]
Line 6 END FOR
Line 7 <display track titles and track lengths>
Line 8 SEND [“CD-R running time ” & totalRunningTime] TO DISPLAY

Line 2.1 REPEAT
Line 2.2 RECEIVE numberOfTracks FROM (INTEGER) KEYBOARD
Line 2.3 IF numberOfTracks < 1 OR numberOfTracks > 20 THEN
Line 2.4 SEND “Please enter number of tracks between 1 and 20” TO DISPLAY
Line 2.5 END IF
Line 2.6 UNTIL numberOfTracks >= 1 AND numberOfTracks <= 20

Line 4.1 RECEIVE trackTitle[counter] FROM (STRING) KEYBOARD
Line 4.2 RECEIVE trackLength[counter] FROM (REAL) KEYBOARD

Line 7.1 FOR counter FROM 1 TO numberOfTracks DO
Line 7.2 SEND [trackTitle[counter] & trackLength[counter]] TO DISPLAY
Line 7.3 END FOR

Part 2
Can you now piece together the jigsaw and describe the purpose of the whole design.

Email your answers for parts 1 and 2 to your teacher.

1

2
3

4 5

6

7

8

9

10

SDD

Programming Theory

20

Testing

When a program is complete it should be tested thoroughly to prove that it can
cope with a variety of different inputs without crashing.

Worked Example
A program is written to record rainfall (in millimetres) over the course of a
month. The program expects each daily measurement to be entered as a number between 0 and 200. An
error message is displayed if the user tries to enter a number outside these limits.
To test this program fully, the user should enter three types of input.
Normal Input the program would normally expect.

In this example this is any number from 0 to 200.
Extreme Input that is on the limits of what the program expects.

Is this example the limits are 0, 200.
Exceptional Input that the program would not normally expect.

Is this example this is any number less than 0 or greater than 200 (-5, 348 etc).
Note that exceptional data could also include the wrong type of data being entered.
‘Banana’ would also be an example of exceptional test data as the program is
expecting a number to be entered.

When testing a program it is common to produce a test plan, mapping out how the program will be
tested.

Task 10 – Creating Test Plans
Using the above table as an example of the layout required, create a test plan (including
normal, extreme and exceptional data) for each of the programs described below.
1. A program calculates the average distance travelled in a week by a cyclist. Each day is

entered as a single value. The program assumes that the cyclist will travel no more
than 100 miles in a single day.

2. A program is written to store the result of a tennis match. An example of a match
result (showing the maximum and minimum values that can entered) is 6-4, 6-7, 6-0.

3. A password program allows a user to created a password that will later be used to
access a database of club member’s personal details. The password entered by the user
should be a single word, 6 to 8 letters long.

Test Data Expected Result
(what you predict will happen when
the data is entered)

Actual Result
(when the data is entered into the
program)

Normal 3
89
45.7

Input accepted
Input accepted
Input accepted

Input accepted
Input accepted
Input accepted

Extreme 0
200

Input accepted
Input accepted

Input accepted
Input accepted

Exceptional -5
348
Banana

Input rejected
Input rejected
Input rejected

Input rejected
Input rejected
Input rejected

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 201421

Errors in Programs

Two types of errors occur in computer programs:

● errors that prevent the program being executed (syntax)
● errors that occur while the program is running (execution, logic)

Syntax Errors
Syntax errors occur during the creation of a computer program when an instruction is incorrectly
typed or formatted. A syntax error will prevent the program from running as the editor can not
convert into binary an instruction it can’t understand.
Misspelt Keywords Pront (“This will not work”) This should have said ‘Print’ rather than

‘Pront’.
Formatting Errors Print (“Missing something) There should be another “ at the end of

the message.
Wrong Language writeln (“Another language”) Programmers who work in several

different languages at once may type a
line that would work well in another
program but appears as a syntax error in
the language they’re currently working in.

Execution Errors
An execution error (often called a ‘runtime’ error) occurs while the program is running.
Unexpected Input An example of unexpected input could be if the program is

expecting the user to enter an Integer but they enter a string
instead causing the computer program to crash.

Never Ending Loops If the conditions for a conditional loop are written in a way
that they can never be true the program will enter the loop but have no way
of leaving it. This will not crash the program but as the program can not go
any further the user will have to quit from it.

Division by 0 It is mathematically impossible to divide a number by zero as there is no
answer. If this happens in a program it will crash.

Logic Errors
Logic error are caused by poor design or poorly written code.
Arithmetic Logic Errors For example, imagine a program that calculates the value of a bag of coins.

The value 127, 1p coins would be calculated as:
valueOf1pCoins = numberOf1pCoins * 1

 If the programmer enters this calculation as
valueOf1pCoins = numberOf1pCoins + 1

 The program would run without any problems it just wouldn’t give the
correct answer.

Selection Logic Errors Mistakes in conditional statements (num<10 instead of num>10) may cause a
program to execute the wrong instructions.

Sequential Logic Errors These types of errors are caused by lines of code being executed in the wrong
order. For example, a calculation is carried out before the data is input.

SDD

Programming Theory

22

Readability of Code

While writing code, programmers will use techniques to ensure that their
code is easy to read.
This is important for the following reasons:
1. While editing the program, it is easier to find mistakes in readable code.
2. While editing the program it is easier to understand the purpose of each

line or section of code.
3. When the program is finished it is easier for another programmer (or the

same programmer) to return at a later date and add more to the program.

Program code can be made more readable in the following ways.

� Comment lines throughout the
program explain the purpose of
each line or section.

� Meaningful variable names
make it clear what data the
variable is storing.

� White space (blank lines)
separate out sections of the code
that perform different functions.

� Formatting the code makes
keywords stand out. Many
modern editors, like the one
shown, do this automatically.

The above code, without the additional
readability would look like this.
You can see how difficult it is to
understand the purpose of the code if it
was poorly written.

Programming Theory

Written by Mr G.Reid, PTC Technologies, Buckhaven High School - Jan 201423

Translating Programs

It is important to remember that, in their English form, computer programs written in a High Level
Language will not run on any computer system. For a HLL program to be run the English program code
must be translated into binary instructions before the code can be executed.
Program code in binary form is known as ‘machine code’.
Translation is required at two stages during the development of a computer program.

Interpreters
During the creation of the program, the programmer will run the code many times as they write the code,
to check that each new section of code works correctly. This will be done without leaving the program
editing environment using an interpreter.

When the programmer selects run from a menu in the
editor, the interpreter begins translating one instruction
at a time, executing each line after it has been
converted to a machine code instruction.
The editor will open an output window to allow input
to be entered and output to be viewed.
When the run is complete no machine code remains as
the translated instructions are not kept.

Compilers
Once a program is complete and fully tested it is translated using a compiler. A compiler translates the
entire program creating a new executable file (.exe) that will run on it’s own without the need for the
editing environment.

Compiled, machine code programs will execute faster than interpreted English instructions as the
computer does not have to translate and execute the instructions at the same time.

Task 11 - Interpreter vs Compiler
Answer the questions below and e-mail the answers to your teacher.
1. What advantage is there, to a programmer, of being able to run a program in the code

editing environment.
2. Explain the statement “some binary is machine code but all machine code is binary”.
3. What would you notice if you executed a fixed loop with 100,000 iterations in an

interpreter and then compiled the loop and executed it again.

001010100100101010101010010
101010010100101101100101100
101010110101010101010101010
101010101010101101010011010
110110001010100100101010101
010010101010010100101101100
101100101010110101010101010
101010101010101010101101010
011010110110001010100100101
010101010010101010010100101

Space Shooter.exe

Machine
CodeHLL

Code

